2004年浅間山噴火に先行する特異な長周期地震活動

山本真紀・武尾実・大湊隆雄・及川純・青木陽介・植田寛子・中村祥・辻浩・小山悦郎・長田昇・卜部卓

（2005年4月13日受付、2005年8月31日受理）

A Unique Earthquake Activity Preceding the Eruption at Asama Volcano in 2004

Maki YAMAMOTO*, Minoru TAKEO*, Takao OHMINATO*, Jun OIKAWA*, Yosuke AOKI*, Hiroko UEDA*, Sho NAKAMULA*, Hiroshi TSUJI*, Eisuto KOYAMA*, Noboru OSADA* and Taku URABE*

On September 1, 2004, a middle-scale eruption occurred at Mt. Asama. Before the eruption, long-period volcanic earthquakes were observed with the broadband seismographs located at the summit of Mt. Asama since October 17, 2003. The signals are so feeble that we can hardly recognize them even at the second nearest station from the summit crater. The long-period earthquakes had been occurring at least before September 5, 2002. The earthquakes have very unique waveforms and can be categorized in 3 types (type 1, type 2, type 3). The sources of these long-period events are located relatively shallow at a depth of a few hundreds meters, just beneath the crater. The depth of the type 1 event is just beneath the vent, the types 2 and 3 being 100~200 meters deep. The activity of these long-period events had been synchronized with the activity of volcanic earthquakes until the last ten days of July 2004. However, the activity had dropped gradually, and no event has been observed since August 24, 2004, just 8 days before the eruption. An earthquake swarm started on August 31, lasting just before the eruption. The hypocenters of swarm, which are determined using the Double Difference method, lie just beneath the vent ranging from 300 m to 800 m deep, suggesting that the shallowest part of the vent is broken during the swarm activity.

Key words: Asama volcano, long-period earthquake, broadband seismogram

1. はじめに

浅間山はわが国有数の活火山で、黒姫火山、仏岩火山、前掛け火山など複数火山で、現在活動中の前の火山は約1万年前に形成された（例えば、高橋、1997）。過去100年間の活動に注目すると、1900年頃から噴火活動があり、活発化する頻繁にブルノ式噴火が発生していたが、1961年の噴火を最後に11年間の静穏期に入った（例えば、宮崎、2003）。その後、1973年と1982年から1983年に中規模噴火があり、最近の活動として、2000年に火山頂の温度変化が認められ、その後地震活動も徐々に活発化しつつあったが、2004年9月1日午後8時に21年ぶりの中規模噴火が発生した。

*〒113-0032 東京都文京区弥生1-1-1
東京大学地震研究所
Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo Tokyo 113-0032, Japan.

Corresponding author: Minoru Takeo
e-mail: takeo@eri.u-tokyo.ac.jp

この噴火の前、2003年秋から山頂火口近傍での広帯域地震計による定常観測が開始され、この地震計によって特異な波形を持った長周期地震が観測された。これらの地震波形は、通常の地震の規模と卓越周期の関係とは大きく異なる様相を示し、マグニチュードが1にも満たない小さな振動であるにもかかわらず、卓越周期が2～3秒かかる10秒と非常に長くなってしまい、断層運動に異なる震源過程が示唆される。また、これらの特異な長周期地震は9月1日の噴火より前に活発化しており、噴火に至るプロセスを考察する上で重要な現象と思われる。本研究では、この特異な長周期地震の特徴を整理し、その活動度と震源分布を調べ、さらに、この噴火のおよそ29時間前から活発化した群発地震活動の震源分布を詳細に決定し、浅間山における噴火に至るプロセスを考察・推論した。

2. 2004年浅間山噴火活動

2004年9月1日の中規模噴火に先駆けて、浅間山周辺
では国土地理院及び地震研究所によるGPS連続観測が行われ、7月下旬に山体深部へのマグマの貫入を示唆する変動が観測された（例えば、青木他、2005；村上他、2005）。浅間山東側山腹の三の鳥居観測点（SAN）で観測される地震の数は8月31日15時から急増、9月1日噴火時までに600個以上発生し、最初の噴火に至った。最初の噴火後、9月14日から18日にかけて1000回以上にわたり小規模な噴火が断続的に発生し、火山灰は山頂から130km離れた東京に及んだ（気象庁、2004）。その後の活動は、いくつかの小規模噴火に加え、9月23日、29日、10月10日に中規模噴火が発生した後、一度終息したように思わせた。しかし、およそ1カ月後の11月14日に比較的大きな中規模噴火が発生している。その後2005年7月1日現在まで、噴火は認められていない。

3. 観測網及びデータ

浅間山における常時地震観測網は、主に有数周期1秒の短周期地震計で構成されていたが、2003年10月17日に山頂の火口周辺（KAC2）に、翌年7月22日には同東端（KAH12）に広帯域地震計が設置され、これまでの短周期のみによる観測では得られなかった様々な情報が手に入るようにになった。設置された地震計はグラルト社製のCMG-3T 360秒計である。最初の噴火があった2004年9月1日時点での稼働中の観測点をFig.1に示す。山頂火口の2観測点の次に山頂に近い前掛観測点（MAE；火口から1.3km南東）には短周期地震計が設置されていたが、2004年5月26日からは広帯域地震計も設置されている。さらに、本研究では東京大学地震研究所が所有する観測点に加え、気象庁の観測点（ASMB, ASMD, ASME, ASMO）の記録も解析に使用した。

山頂火口近傍に設置した広帯域地震計は、2003年10月の設置以降、特に長周期振動を記録していた。これらの振動は微弱で火口近傍の観測点（KAC2, KAH12）以外では記録されないものが多いとところである。8月26日から山頂の西方及び東方で地震計アレイを設置して観測を開始したが、噴火によって多くのアレイ観測点が破壊され、被災を免れたものは4点のみであった。このうち、東側アレイの2点（EO7, EO9）を、噴火前の群発地震活動の震源決定に用いた。

4. 特異な長周期地震

Fig.2にKAC2に設置された広帯域地震計の2004年6月11日午前のモニター記録を示す。図中に矢印で示したように、特異な長周期の振動を確認することが出来る。この地震計とほぼ同じ場所に設置された短周期計の記録に周波数特性の補正を施して比較した結果、同様な長周期の振動が記録されていることが確認できた。さらに、KAH2に2004年7月に設置された広帯域地震計によっても同様の波形が確認できた（Fig.3参照）。これらの事実は、記録された特異な長周期振動が地震計のトラブル等によるものではなく、真の地震であることを示している。これらの地震のうちでも規模の大きなものは、火口から1.3km離れたMAEでも波形を確認できるが、多くの場合この長周期成分は火口近傍の2観測点以外では記録されておらず、震源は火口ごく近傍であると推測される。

上で述べた特異な長周期地震は、主に典型的な3つの類型に分類される。

タイプ1（パルス型）

パルス型の波形を持つ地震で典型的なパルス継続時間は3-4秒である。さらに、高周波の波が重複しているものが多い。今回調べた噴火前の期間（2002年9月～2004年...）
年8月）については殆ど恒常的に発生しており，3つの種類の中では最も観測数が多い，典型的な波形例をFig.3に示す。6月11日の地震記録では，生データと1Hzのローパスフィルタをかけた波形，及び地動変位に直した波形を示している。周波成分を除くと，パルス型の長周期振動が明確に確認できる。8月5日の記録では，1HzのローパスフィルタをかけたKAC2とKAH2の火口東西の観測点記録を示してある。両観測点で似たような地震波形が記録されているが，KAC2の振幅がKAH2に比べ約2倍となっている。この地震の長周期成分の振幅特性を調べるため，2004年8月に発生したこのタイプの地震について，KAC2とKAH2で記録された波形に1Hzのローパスフィルタを施して比較した。その結果，KAC2の方がKAH2よりも系統的に大きく1倍から3倍の振幅を持つことが明らかになった。これは震源がより西側の観測点に近いところに位置している可能性や，震源での地震波の励起が非等方的であることの可能性等を示唆する。一方，初動の方向は常に，山頂の2観測点（KAC2，KA H2），MAEも火口付近を中心に外側に押し出す向きになっており，震源メカニズムとして火道浅部での膨張が示唆される。

タイプ2（長周期減衰型）

減衰と共に周期が短くなるような長周期の波に，短周期の比較的大きなイベントが追従している。Fig.2のモニター記録中で19時11分及び19時52分付近に見られる大きな短周期地震を伴った長周期振動が，典型的な波形である。長周期成分を見やすくするため，振幅を拡大した波形例をFig.4に示す。このタイプの地震は主に2004年の6月から7月にかけて観測されており，全体の継続時間は30〜100秒である。殆どのイベントはさらにもうひとつの短周期のイベントを伴っており，2つ目のイベントまでの間隔はおよそ40〜100秒である。また，
長周期の波の初動付近の典型的な周期は5〜10秒で、その波形は環の上半分もしくは上半凸の物を持つような形状をしている。時間と共に周期が短くなっていく様子は、ゴムまが硬い床の上を跳ねながら移動していくときの軌跡に類似している。タイプ2の形態として短周期のイベントを伴わないようなイベントも観測された。

タイプ3（衝撃型）

継続時間が100秒から300秒と長く、単一ではなく周波数を持つ微動でその波形は先のとまった形状をしており、周期周期成分のピークの直後に短周期成分が重複しているものもある。波形の例をFig. 5に示す。このタイプは、主に2004年の3月から7月にかけて観測され、その卓越周期の変化の様子はイベントごとに異なる。例えば、Fig. 5に示した微動では、最初Fig. 5の1480秒付近を4秒の波が卓越しているが、徐々にその周期が長くなり約100秒後（Fig. 5の1580秒付近）には10秒を超える卓越周期になっている。

震源の推定

前に述べたように、これらの地震の多くは火口近くの2観測点以外ではノイズレベルより小さい振幅で記録できず、震源は火口近く近辺であると推測される。さらに、S波の到達時間を読み取ることも困難であり、通常の震源決定方法で震源を決めることは出来ない。そこで、ここではパーキャルモーションから、その震源位置の推定を試みる。これらの地震には1Hz以上の高周波の波も重複しているが、我々は1Hz以下の長周期成分に注目し、その波の到来方向から長周期地震波の波源位置の推定を試みた。そこで注目する波の特徴的な周期は数秒程度であるから、波長は数kmから10km程度あり、火口付近の地形や局所的な構造の影響は受けにくいものと考えられる。タイプ1及びタイプ2の地震についてはカットオフ周波数1Hzおよびカットオフ周波数0.3Hzのローパスフィルターをかけた長周期成分の初動5秒分のパーキャルモーションをFig. 6a及びFig. 6bに、タイプ3の地震については同様のフィルターを主要動の10秒間にかけたパーキャルモーションをFig. 6cに示す。それぞれの図では、水平および鉛直断面にパーキャルモーションを描いてある。なお、カットオフ周波数1Hzのローパスフィルターをかけたパーキャルモーションは破線で、カットオフ周波数0.3Hzのローパスフィルターをかけたパーキャルモーションは実線で示している。主要動部分で卓越する波がS波の振動をしていると考えると、これらの地震は山体から上に離れた場所もしくは空中に震源がないと説明できない。しかし、山腹の観測点でこれらの地震は記録されておらず、山体から上に離れた場所に震源があるとは考えにくい。そこで、地震波の主要動部分はP波的な波動をしていることが推定でき、その波動源の位置を推定した。なお、1Hzのローパスフィルターをかけた波形でも短周期成分が残っているためパーキャルモーションが乱れており、到来方向の推定に若干の任意性が残る。すなわち、これは0.3Hzのローパスフィルターをかけたパーキャルモーションからその到来方向を推定している。その結果タイプ1の地震は、火口付近の位置に推定され、放射鉛直面上の初動は、山頂2点およびMAEの3点全てで火道から押し出す方向を向いていることも確認できる（Fig. 6a）。タイプ1の地震でMAEの

Fig. 4. Macrograph of seismograms of type 2 events. We can confirm long-period waveforms in these seismograms clearly.

Fig. 5. Waveform examples of type 3 event occurred on June 23, 2004. A vertical ground velocity recorded at KAC2 is shown in the top panel. The second trace is a high-pass filtered ground velocity with a cut-off frequency of 1 Hz. A low-pass filter with a cut-off frequency of 1.0 Hz is worked on the third trace.
記録を解析に使える地震はここに示したものだけであるが、他のタイプ1の地震については山頂2点のパーティクルモーションからその到来方向の推定が可能である。その結果、幾つかの地震については水平面内での振動がやや火口カルテラ中央方向に向くものも見られるが、鉛直面ではFig. 6aに示すように極めて浅い方向を向く。タイプ2については、震央はほぼ火道の位置で、深さはタイプ1よりもやや深い火口底からおよそ100〜200mの位置に推定された（Fig. 6b）。初動の向きは火口東西各点で、火道から押し出す方向であった。タイプ3については2004年6月23日4時23分頃に発生したイベントについて解析した結果を示す。その立ち上がりが明瞭に区別できないため、主要動成分の10秒間の振動方向から震源位置を判断した結果、震央はほぼ火道の位置で、タイプ2と同様に、深さはタイプ1よりもやや深い位置に推定された（Fig. 6c）。なお、この微動はKAH2に広帯域地震計が設置される前に発生したものであるため、KAH2でのパーティクルモーションは短周期地震計からその特性を補正して求めている。KAH2のパーティクルモーションの直線性がKAC2のそれに比べて悪いのは、地震計の違いによる可能性もある。

長周期地震の活動推移

KAC2で観測が始まった2003年10月17日以降について、KAC2の鉛直成分モニター記録から日別の地震発生生数を数え、東側の山腹にあるSANで観測された通常の火山性地震の発生生数を併せてプロットした結果をFig. 7に示した。長周期地震の数はKAC2での振幅が5×10^{-4}m/s以上のものを数え上げてある。特異な長周期地
震の活動はおおむね通常の地震と同様の消長を見せており、7月24日以降発生数が減少し始め、8月6日以降全く観測されていない。一方で、通常の火山性地震は噴火の数日前から劇的に発生数が増加し、噴火に至っている。浅間山周辺では国土地理院及び地震研究所によるGPS連続観測が行われているが、特異な地震と通常の火山性地震との活動推移に相似が見られるようになる2003年7月下旬に、山体深部でのマグマの貫入を示唆する地殻変動が観測されており（青木・他、2004）、マグマの貫入が何らかの形で特異な地震の消減に関与したことが考えられる。

山頂に広帯域地震計を設置する以前の長期地震の活動を調べるために、短周期記の記録から地震計の周波数特性を補正した、最もよく観測されるタイプ1の周期が5秒以下であることを考慮して、補正した記録に通過帯域を周期20秒以上とするパイパスフィルターを施して長期のノイズを除去した。その結果、少なくとも2003年の9月5日までに新たに特異なイベントの発生が確認でき、その活動推移は通常の火山性地震とはほぼ同じであることも分かった。

5. 群発地震の震源分布

噴火前の群発地震活動は噴火前日、8月31日の15時00分頃に始まり、9月1日の日中に最も活動的であった。その後、徐々に活動は低下しながらも20時02分の噴火に至るまで続いている。これらの地震は山頂から離れた観測点の記録からはS波の相があまり明瞭でないB型の火山性地震に分類されるが、山頂火口東西の観測点（KAC2, KAH2）では、P波とS波が近接して到達し、波形からはA型に分類される火山性地震の波形に類似している。また、前節までに述べてきた特異な長期地震は、8月23日を最後に発生しておらず、群発地震の中には含まれていない。これらの群発地震活動において詳細な相対震源分布を得るためDouble Difference法（DD法）（Waldhauser and Ellsworth, 2000）を用いて震源を再決定した。DD法とは、震源から観測点への波線がほぼ共通になるような地震のガウス（クラスター）の観測点間残差と計算値残差の差（二重差: Double Difference）を最小にするような震源を求める方法で、仮定した速度構造や、観測点直下の局地的な構造などによる影響を受ける。精度の高い相対震源分布を再決定することができる。一方、同一のクラスターに分類される地震では、各観測点へのスローネース・ベクトルは同じであると仮定しているので、観測点までの距離に比べて十分に小さいクラスターサイズ（MAXSEP）を設定する必要がある。そこで、ここではMAXSEPをいくつか変えながら震源再決定を試みた。

群発地震の多くは微小な地震であるため、山頂付近の観測点のみでしか読みえないものも多いが、ここでは精度よい相対震源分布を出すことに主眼をおき、火口東の観測点にアレイ観測でP波、S波の到達時刻が読み、かつ気象庁のB, G, Eの各点とKURで少なくともP波の到達時刻が読み取れる5個に絞り込んで震源を再決定した。初期震源の分布をみると、極めて浅い5個の地震を除けば、最も近い山頂の観測点との震源距離は約600mから1km程度である。また、初期震源の震央はほぼ火口カルテラ内であり、深さは海抜1500～2400mに分布する。MAXSEPを80mと大きくとると、再決定される地震はわずか11個となるが、その震源は火口直下深さ500m（海抜2000m）に集中する。また、これらの地震の波形は時間の経過と共に若干相関は悪くなるが2組の相似な地震群に分けられ、波形からもほぼ同一の場所で発生している地震であることが確認できる。MAXSEPを150mと大きくとると、51個の地震が再決定されるが、クラスターといわせるな地震も含まれており、それらの間ではスローネース・ベクトルの向きのずれは山頂の観測点で15度程度まで広がる。再決定された震源分布では、深さ300mより浅い地震が西側に少しづつ減少し、これにスローネース・ベクトルが一定と見えない程度にクラスターを大きくとったことに起因する可能性がある。深さ300mよりも深い地震の分布は、次に示すMAXSEP＝100mの時より再決定される地震数が多くになったこともあり若干広がっているが、ほとんどの位置に集中している。MAXSEPを100mにすると、ス
ロネス・ペクトルの向きのずれは山頂の観測点でも 10 度以下となる。山頂以外の観測点ではそのずれはさらに小さくなり、十分に同一のロネス・ペクトルと見なすことが出来る。MAXSEP = 100 m として再決定した震源分布図を Fig. 8 に示す。31 個の地震が再決定され、その震源は今回噴火した火口の直下深さ 300 m から 800 m ほどの鉛直に分布する。このクラスターサイズでは再決定された地震は対象とした地震（55 個）の 56%。群発地震全体（約 600 個）の 5% でしかない。しかし、対象とした地震は観測網の多くので到達時間の読み取れる群発活動中でも比較的大きな地震であり、これらの震源を精度良く決めるのは噴火直後のプロセスを考察する上で重要であろう。なお、P 波速度は 2.6〜3.28 km/s、V_p/V_s 比は 1.73〜1.97 の間で、値を動かして求めた場合も、ほぼ同様の震源分布が得られた。

6. 考 察
得られた群発地震の震源分布図 (Fig. 8) に、大塚・他 (2005) に依って解析された爆発地震の励起源であるシングルフォースの位置を矢印で示してある。さらに、ベータモデルから推定した長周期地震・微動の位置も示してある。噴火前の群発地震の震源分布は、噴火に伴う爆発地震のシングルフォースの位置付近を浅層として海底 1700 m 付近までは鉛直に分布しており、これらの比較的大きな地震は主に、噴火直前のマグマ上昇に伴う火道とその周辺の破壊によるものと考えられる。

タイブ 1 の地震は 2002 年 9 月以降、2004 年 8 月 24 日に発生するまでの間恒常的に発生しているが、この地震が何時から発生していたかはまだ明らかではない。一方、タイブ 2、3 の地震が観測されたのは 2004 年の 5 月から 6 月で、発生時期が限られている。また、これは 7 月後半からの火山性地震の増加に先駆けて、火山性地震活動が活発化した時期に対応している。このような観点で、2004 年の 5 月から 6 月にかけて火道内部で長周期微動を引き起こす要因と成りうる。例えば、地殻内流体もしくはマグマの移動などといった、何らかの特別な物理過程が進行していた可能性を示唆する。

タイブ 1 のベータモデルは山頂の 2 観測点及び MAE において、火道から外側に押し出す方向を向いている。この様な微動の向かし方にはパルス型の波形を示す Grants が示す最もシンプルな考え方として、火道と火道の急激な増減圧が考えられる。また、山頂の 2 観測点では振幅に差があるが、それは、火道内流体の局所的な構造により、必ずしも等方的ではない形態を持つ増減圧を仮定すれば可能である。また、タイブ 1 の地震は少なくとも噴火の 2 年以上前から継続的に発生していたこと、その発生源が噴火直前にマグマ上昇により破壊された火道の領域より深いところにあったと推定されることを考え合わせると、その増減圧を引き起こす要因としては、火道ぐる近辺の高温な領域に流入した地下水の急激な蒸発が最も考えやすいと思われる。これに考慮すると、7 月後半の山体深部へのマグマ貫入の時期を境に徐々に変化した長周期地震（その多くはタイブ 1 の地震である）が減ら始めたことは、マグマ貫入により火道付近の温度がさらに上昇して、タイブ 1 の発生源である地下水が枯渇したことによって説明することができる。

7. ま と め
2003〜2004 年に浅間山山頂火口周辺に設置された広域域地震計が捉えた非常に特異な長周期地震の記録を解析した。これらの特異な長周期地震は遅くとも 2002 年 9 月 5 日から発生していたことが確認できた。また、活動推移は 2004 年の 7 月下旬までは通常の火山性地震と概ね一致しているが、7 月下旬以降、通常の火山性地震
震の回数が増加する一方で特異な地震の発生件数は減少し、8月24日以降は観測されていないことが分かった。特異な長周期地震は3つの典型的な型（タイプ1, 2, 3）に分類することができる。タイプ1の地震はパルス的な波形をしており、その特徴的な週期3～4秒程度で、パルスに似たモーションから推定された震源の位置は火口の直下であった。また、その初動はKAC2, KAH2, MAEの三点で震源から押し出す向きであり、タイプ1の地震は火道浅部での急激な段階・層压によるものと考えられる。可能性の一つとして、火道浅部の高温領域で地下水が急激に増加することによる層压が考えられる。タイプ2の地震は減衰と共に周期が短くなっていくような長周期の波形、10～20秒ほど遅れて短周期の地震が追随して起こるもので、2004年の5月から6月にかけて集中的に観測されている。震源はタイプ1よりもやや深く、海拔およそ2300～2400mに分布している。タイプ3は時間と共に周期を変化する、波形を伴った地震で、震源はタイプ2とほぼ同位置に分布している。8月31日から9月1日にかけて600個以上の群発地震が噴火までの29時間の間に発生している。これら群発地震のうち、比較的大きな地震31個の相対震源位置をDouble Difference法によって再決定したところ、今回噴火した火口の直下で断面深さおよそ1700～2200mにはほぼ鉛直分布する。これらの地震は、噴火前のマグマ上昇に伴う火道とその周辺の破砕によるものと考えられる。

謝辞

本研究の経費の一部は平成16年文部科学省科学研究費助成金（特別研究推進費）「2004年浅間火山の噴火に関する総合的調査」（代表者：中田節也、課題番号16000002）を使用した。また、震源の解析にあたっては気象庁のデータを使用させて頂いた。ここに記して感謝の意を表します。

引用文献

青木陽介・渡辺秀文・小山悦郎・及川 純・森田裕一（2005）2004年浅間山噴火にともなう地盤変動。火山、50（印刷）
大沼隆雄・武尾 夠・熊谷博之・山崎匡史・及川 純・小山悦郎・辻 浩・本部 卓（2005）2004浅間山噴火に伴う爆発地震の解析。2005年度地球惑星科学関連学会合同大会講演予稿集。
気象庁（2004）2004年浅間山平成16年（2004年）の火山活動経過の概要。火山噴火予知連絡会会報、89、11-23。
高橋正樹（1997）日本列島第四紀島弧火山における地殻内火道マグマ供給システムの構造。火山、42、S175-S187。
宮崎 紘（2003）浅間火山活動記録の再調査。東京大学地震研究所彙報、78、283-463。
村上 亮（2005）GPS連続観測結果が示唆する浅間火山のマグマ供給系。火山、50、347-361。

（編集担当 西村太志）