Magmatic Differentiation Process Inferred from Plagioclase Zoning and Its Pattern

Akira Tsune* and Atsushi Toramaru*

Relationships between whole rock composition of magma and plagioclase zoning were investigated on volcanic rocks from the Shirahama Group, Izu Peninsula, Japan, which have the various chemical compositions of tholeiitic series produced only by crystallization differentiation. The plagioclase zoning can be divided into the following three zoned regions, (1) oscillatory-zoned, (2) patchy-zoned, and (3) unzoned regions, based on Anderson(1984)'s classification. We described the flatness of zones and the spatial distribution of zoned regions from core to rim of the phenocrysts, and found the relations between the characteristics of plagioclase zoning and the whole rock compositions. As the whole rock SiO₂ increases, (1) the number of resorption zones, defined as zones with resorbed track, increases; (2) the frequency of plagioclase with patchy-zoned region decreases; (3) the frequency of plagioclase with the patchy-zoned region in central parts of crystals increases; (4) the diversity in the zoning pattern becomes smaller. In basalts, various zoning patterns can be observed whereas in dacite, oscillatory zoned regions are dominant.

Our observation can be explained by a simple model involving the homogenization processes of heterogeneity in a magma chamber, associating with the crystal growth or dissolution processes. According to the model and the observations of natural plagioclase zoning, we can give a constraint on the characteristics of homogenization process developed in an evolving magma chamber: parameters of the characteristics ϕ, the volume ratio of relatively differentiated part in the magma to homogenize and γ, chemical contrast of the magma. At the initial stage (basalt magma), the homogenization process with large ϕ and small γ is dominant. At the later stage (dacite magma), the homogenization process with large ϕ or small γ is dominant.

Key words: plagioclase zoning, heterogeneous magma, homogenization process, the Shirahama group

1. はじめに

という多様な観点から検討されている。

斜長石は固体内拡散速度が速く、マグマの環境の時間変化をよく保持していると考えられるので、累帯構造の形態的特徴だけでなく斜長石斑晶のコアからリムにかけての累帯構造の特徴の変化（本稿では“累帯構造・パターン”と呼ぶ）に注目することが出来る、Anderson（1984）は、ダーケマラ、フェオ山の玄武岩質火山灰の斜長石の形態的特徴や累帯構造の記載研究を行い、波状累帯構造をなす領域とメルト包物体を含む領域が反復している累帯構造パターンから火道を上昇するマグマのダイナミクスを論じている。

このように、火山岩の斜長石累帯構造に関する研究は多くあるが、全岩化学組成の大きく異なる玄武岩、安山岩、ダイサイトの火山岩同士で斜長石累帯構造の比較をした報告はStamatelopoulou-Seymour et al.（1990）を除いてほとんどない。全岩 SiO$_2$ wt.％と斜長石累帯構造の特徴との関係は、マグマの分化的程度の違いやマグマの非平衡状態の移り変わりを反映していると考えられるので、マグマの分化過程に新たな制約を与え、が期待される。そこで本研究では、Anderson（1984）の記載方法に従い、全岩 SiO$_2$ wt.％と斜長石累帯構造の関係を調べた。また、本稿では火山岩 SiO$_2$ wt.％と斜長石累帯構造の特徴の関係を説明するマグマ流まりの分化過程を考察した。

2. 方法と岩石試料
2.1 分析方法

斜長石累帯構造観察では、偏光顕微鏡とNDIC顕微鏡（Nomarski Differential Interference Contrast microscopy）を用いた。NDIC顕微鏡は特に複雑で細かな累帯構造を記載するのに効果である（Anderson, 1983）。

NDIC顕微鏡による斜長石構造観察の方法や条件については、Anderson（1984）の方法を用いる。NDIC顕微鏡で観察するには、次の処理を行う（Anderson, 1983）。まず薄片に鏡面仕上げを施し、その後フッ化ケイ素酸で薄片表面を腐食処理する。斜長石累帯構造は主に溶解成分であるCaとNaによる空隙欠損状態であり、相対的に斜長石のCaに富む部分が腐食され易く、Naに富む部分が腐食に耐える。従って、腐食処理の結果薄片の斜長石表面に累帯構造による凹凸模様が出来る。NDIC顕微鏡では、微小距離を移動させた観察を行うことで、その凹凸による光路差を干渉色の違いとして観察することが出来る。実際上腐食処理によってAn値1mol.％未満の組成変化を観察することが出来る（Anderson, 1983）。NDIC顕微鏡はこのような凹凸つまり縦方向の解像度は高いか、横方向、つまり薄片表面での解像度は通常の偏光顕微鏡同様、光の波長程度である。

NDIC顕微鏡を使用する大きな利点は、空間変動スケール及び組成変動スケールの微小な変化を定性的に観測することである。斜長石の組成変動が大きい場合には、その累帯構造は偏光顕微鏡クロスコール観察では干渉色や消光位置の違いとして確認でき、オープンシロコール観察ではペッケ線として確認できる。しかしながら、実際には空間スケール及び組成変動スケールが小さくNDIC像によつてのみ観察可能な累帯構造の出現頻度は多い。μmスケールの斜長石累帯構造はSEM画像でも観察出来るが、NDIC顕微鏡による観察の方が容易かつ安価に大差ない結果（Anderson, 1983）を得ることが出来る。また、累帯構造の観察だけでなく、隣接している鉱物同士の境界や石基組織の観察にもNDIC像は有効である（Pearce and Clark, 1989）。

岩石試料の主元素分析は、金沢大学大学院の理学電気製三光X線分析装置Rigakuシステム3270を用いた。測定は管電圧を50kV、管電流を20mA、ビーム径3μmで行った。鉱物化学組成は金沢大学のEPMA（JEOL JXA-8800R）を用い、加速電圧15kV、試料照射電流12nA、ビーム径3μmの条件で行った。

岩石薄片における斜長石斑晶のモード、サイズを求めるために次の画像処理技術（西本，1996）を用いた。まずスキャナを用いてパーソナルコンピュータに岩石の薄片写真の画像データを取り込む。そして、鉱物の領域の画素数を数え、それぞれ1つ1つ面積を測定する。集合斑晶は手動で分け、この作業に使用した顕微鏡はNikon UFX-IIAで、カメラはNikon FX35WA、画像処理に使用したソフトウェアは「Adobe Photoshop™」と「NIH Image」である。

2.2 斜長石累帯構造の記載方法

累帯構造（zonation）は結晶空間内でみられる不均質構造であり、火山岩の産岩鉱物については一般に結晶成長・融解（溶融）時に得られる。累帯構造の基本単位は縦（zone）であり、1つの縦は結晶の中心部から外側にかけての縦帯状層の1つ（ridge）と谷（valley）に対応する（Anderson, 1984）。腐食処理を施した薄片をNDIC顕微鏡で観察すると、個々の縦は、浸食された部分と侵食に耐えた部分として識別できる。本研究では、結晶の中心部から外側にかけて累帯構造の特徴を追い求めめる場合、結晶空間内に異なる累帯領域（zonated regions）が分布していると表現する。本稿では、Anderson（1984）に基づき、累帯領域が結晶中心部から外側にかけて現れる順序、累帯構造パターン（zonning pattern）を記載した。斜長石斑晶内にみられる累帯領域の種類は次のAnderson
(1984) の分類に基づく：(1) 波状累帯領域（oscillatory zoned region）、(2) 不規則累帯領域（patchy zoned region or irregular zoned region）、(3) 非累帯領域（unzonated region）。記載の際、これらの累帯領域は、それぞれの累帯領域を英語の頭文字をとって、o, p, u のように表記する。例えば、結晶の中心部に u, その外側に o, p, o と続き、u-o-p-o と記載する。Fig. 1 に、u-o-p-o の累帯パターンをもつ斜長石斑晶の模式図を示す。Fig. 2a には u-o-p-o の累帯パターンを持つ結晶の NDIC 像を示す。

波状累帯領域は、結晶空間内的化学組成が結晶の中心部から外側に向かって波状変動している領域であり、数多くの縦から構成される（Figs. 2c and 2d）。不規則累帯領域は、メルト包有物を伴う（Figs. 2b, 2c, and 2f）。但しメルト包有物の形状等は問わない、不規則累帯領域の結晶部分、つまりメルト包有物を含まない部分は不規則な縦が分布している。また、メルト包有物を含む部分の外側には波打ちのような形状を呈した縦が数本あるが（Anderson, 1984）、この場合、外側にある平滑な縦までの領域を不規則累帯領域と呼ぶことにした（Figs. 1 and 2b）。非累帯領域は形成変動がほとんどない領域を指す。個々の非累帯領域と、縦の幅が大きい波状累帯領域との区別は困難な為、非累帯領域は結晶中心部でのみ定義する。外側の波状累帯領域の平均幅よりも、おそらく 20 倍以上広い均質な領域をもつ場合、結晶中心部は非累帯領域であると判断した。

斜長石累帯領域の出現順序は結晶面によって異なる場合がある（Anderson, 1984）ので、この場合、より多様性のある結晶面のパターンを採用した。例えばある斜長石斑晶について、ある結晶結面で p が存在し、別の結晶面で p が存在しない場合には、p は存在するとして記載する（Fig. 2b）。各々の累帯領域の占める、結晶中心部から外側にかけての幅も結晶面によって異なる場合があるので、特に代表的な値を示した。腐食処理で結晶表面が著しく損傷し、記載が困難な場合、あるいは非常に複雑で識別が困難な場合は unknown として扱った（Anderson (1984) の miscellaneous あるいは n.d. に相当する）。

火山岩の斜長石累帯構造の多様性を記載する際に、累帯領域を基準とした累帯構造パターンの記載以外にも注目する必要がある。特にそれぞれの累帯領域内部でも外側（結晶最外部に近い側）と内側（結晶中心部に近い側）で特徴に明確な違いが認められる場合がある（例えば Pearce and Kolinsky, 1990）。従って、累帯領域を詳細に定義することで、例えば p-p や o-o という表記も可能である。しかし、本稿ではこのような表記方法を取りらず、累帯領域内部に多様性が認められる場合には、その点を別に記載した。

本稿では、特に以下の累帯領域の形態的特徴を記載した。波状累帯領域については、個々の縦の幅（thicknness）と、形状が平滑（flat zone）か波打っている（wavy or curvy zone）かという点に注目した（Fig. 1; Anderson, 1984）。Pearce and Kolinsky (1990) は波状累帯構造を、縦の平滑さと幅、化学組成によって、次の 2 つに分類している：An 値振幅が小さく（1〜10 An mol.%），縦の幅の小さい（1〜10μm）平滑な縦（タイプ 1）、及び An 値振幅が大きく（8〜37 An mol.%），縦の幅の大きい（3〜100 μm）、また平滑でない縦（タイプ 2）。本稿では、波状累帯領域の個々の縦について、Pearce and Kolinsky (1990) のタイプ 2 に相当する、エッジの部分が侵食されているようにみえる縦を融解縦（resorption zone）と呼び、それぞれの斜長石斑晶に含まれる数を測定した。Figs. 2c と 2d にはそれぞれ、融解縦がない波状累帯領域と融解縦の多い波状累帯領域を示している。

波状累帯領域の個々の縦について、主に融解縦であるかどうかをエッジの部分で判断する（Fig. 2d）。一般に、エッジ部分が侵食されている縦は、エッジ部分以外の同時成長面（2次元では結晶の面の部分）にも侵食されたように見える跡を有する。しかし、2次元での結晶の面の部分が平滑でないという特徴だけでは、マリンス・セカーカ理論（Mullins and Sekerka, 1964）で言われている。
Fig. 2. Photographs of plagioclase phenocrysts in the Shirahama group volcanic rocks. Photos (a)-(e) are NDIC images, and (f), cross-polarized light image. (a) Zoning pattern of u-o-p-o (basalt 314). (b) Patchy zoned region in 2 mm long phenocryst with zoning pattern of u-p-o (basalt 314). The patchy zoned region can be recognized at the left crystal face, but not recognized at the right (arrow). (c) Flat zones in 500 μm long phenocryst with zoning pattern of u-o (basalt 314). (d) Resorption zones defined as eroded-like tracks at crystal corner (dacite 301). The phenocryst is 500 μm long, with o zoning pattern. (e) Honeycomb structure (andesite 312-3). The phenocryst is 1.5 mm long, with zoning pattern of p-o. (f) Dusty zoning (andesite 326).
斜長石累帯構造が示すマグマ溜まりの分化過程

ような不安定な（曲率を有する）成長界面であるのか、融解により侵食された跡であるのかを鏡下で判断することは難しい。従って著者らは、断面が束縛状に観察した後に目詰めた。何故なら、結晶が過熱されること、結晶のエッジ部分が優先的に融解すると考えられるからである（ギブス・トマン効果、Kingery et al., 1976）。実際に、エッジ部分で侵食されているが、結晶の凝固部分では平滑に見える鏡も認められる。

また、結晶が融解を伴わなくても、結晶のエッジ部分がファセットではなく丸みを帯びたように生える場合がある。この場合、エッジ部分に相当する結晶面が、比較的高速に成長する結晶面とすると予想される。そこで本研究では、ある鏡が融解面であると判断する際には、(1) エッジ部分で侵食されたように見える、エッジ部分の曲率が（部分的に）負である点だけでなく、(2) 他の鏡を切っているように見える点や、(3) 結晶の角の部分でも侵食されないように見せる、という点を考慮して判断した。単に、エッジ部分が正の曲率をもつだけの場合には融解面と呼ばないようにした。

不規則累帯領域については、ソルト包有物のサイズ、形状、配列の仕方に注目する。不規則帯累帯領域に相当するパッチ状累帯構造 (Anderson, 1984), 汚濁帯 (Tsuchiyama, 1985), 蜂の果構造 (Kawamoto, 1992), 粗晶状組織 (Lofgren, 1974; 1980) の多様性はメルト包有物のサイズや形状、配列の仕方などで記載できる。パッティング累帯構造は、累帯領域の側方にみられる鏡は波打っている場合が多く、メルト包有物は通常円～楕円形を呈し、側面の多形累帯部分あるいは非累帯領域に接するような存在していることが多い (Fig. 2b; Anderson, 1984)。

蜂の果構造 (Fig. 2c) は楕円形～不整形のメルト包有物が結晶界面内に散在しているものを指し、汚濁帯 (Fig. 2f) は直状のメルト包有物が結晶界面内に密に分布しているものとし、結晶成長が進行する (Kawamoto, 1992)。蜂の果構造はメルト包有物の個数が少ない (1個～数個) が、結晶よりもメルト包有物が占める割合が大きいものを指す（例えば Tsuchiyama, 1974）。結晶中心部に、比較的サイズの大きいメルト包有物が散在している場合には、形態的特徴のみからパッチ状累帯構造と蜂の果構造の区別をすることが難しいが、著者らは不規則帯累帯領域の側面の鏡の形状が波打っているものをパッチ状累帯構造、ファセットであるものを蜂の果構造として区別した。本稿では、不規則累帯領域をなすパッチ状累帯構造、汚濁帯、蜂の果構造、酸晶状組織のそれぞれに厳密な分類基準を設けず、上記の定義的基準をもとに、それぞれの不規則帯累帯領域がどの形態に類似しているかを記載した。

なお、不規則帯累帯領域という名称は、累帯領域の結晶

部分の特徴が空間的に著しく不規則な累帯を呈することから名付けた。一般に、不規則累帯領域中の結晶部分では、結晶界面に平行な鏡よりもメルト包有物の外径に沿った鏡が非常に不規則な形状を呈した鏡が卓越している。メルト包有物の外径に沿った鏡は、融解や急成長によって取り込まれたメルト包有物とメルト包有物周縁の結晶との関係によって生じたと考えられる (Tsuchiyama, 1985)。

2-3 試料

試料は伊豆半島南部に広く分布する白浜層群のソレア

イト系列火山岩 (Tamura, 1994) である。試料採取地域は伊豆半島南部の海岸線近くで、石炭崎、入間、小浦付近である。白浜層群は中期中新世か鮮新世の海成堆積物で、岩相は変化に富んだ火山堆屑岩、溶岩流、貫入岩体からなる（例えば Kano, 1989）。白浜層群にみられる火山岩類の全岩化学組成は玄武岩からおよび山岩である。火山岩化学組成、造岩鉱物モード分析、微量元素組成分析から、その地域に産する火山岩は、ソレアイト系列とカルクアルカリ系列の2つの岩系に分類される (Tamura, 1994)。さらに Tamura (1995) によると、白浜層群のソレアイト火山岩の石英化化学組成の多様性は結晶分化作用モデルによって説明出来る。

採取した岩石試料は全て岩脈あるいは岩脈起源の軸石である。母岩は主に白色凝灰岩質で、白浜層群の1つ、一色凝灰岩層である。採取した9つの岩脈の全岩化学組成をTable 1に示す。結果は水準100％として再計算されている。9つの岩石の組成範囲は、Tamura (1995) と同様、おおよそ全岩 SiO₂ wt.％=50～65wt.％の範囲に渡っている。

岩石試料の斑晶鉱物組成の多くは、斜長石、単斜輝石、鉱 كاتان酸化物で、斜方輝石、エバライトを含む場合もあ る (Table 1; Tamura, 1994)。また、斑晶鉱物のほとんどは斜長石であり (Table 1)、斑晶コアの化学組成は、玄武岩 (試料314) で An₄₈±92、安山岩 (試料326, 305A, 305B, 312-3) で An₃₇±6, ティサイト (試料311-3, 300, 312-1, 301) で An₃₄±7 である (Fig. 3)。

Table 2には、画像処理によって得られた斜長石のモードや面積のデータを示している。斜長石モードのデータはポイントカウント法による結果 (Table 1) と大きな差はなかった。

Table 2に示すように、斜長石のモードは、全岩 SiO₂ wt.％の増加に伴い数10％から5%前後へと単調に減少している (Tamura, 1995)。また、斜長石の平均サイズは、大局的には、全岩 SiO₂ wt.％の増加に伴い約0.4 mm₂から0.1 mm₂以下へと減少している。本研究では画像処理の結果、サイズが約0.01 mm₂以上の結晶を斑晶とみ
なし（Table 2），それらについて累帯構造の記載を行った。
記載を行った面積は各岩石試料、おおよそ薄片1枚分（4cm²程度）である，それぞれの岩石試料で100から数100，総計3,000以上（Table 2）の斜長石について累帯構造パターンを決定した，観察の結果，ほとんどの累帯構造面の3つ（o, p, u）のうちいずれかに分類出来ることを確認した。

3. 斜長石累帯構造の記載

3.1 玄武岩

斜長石（長径0.4〜4mm）は，しばしば結晶中心部や周縁部に不規則累帯領域を含む（u-p-o, o-p-o, p-o-p-oなど）(Table 3)。不規則累帯領域の特徴はAnderson（1984）のパッチ状累帯構造（Fig. 2b）の特徴に類似している。斑晶最外部には共通して，10〜50個程度の平滑な面（面の幅1〜5μm）からなる波状累帯領域が存在する，外側の波状累帯領域内に，融食面は全く認められないか，あるいは1〜2つ存在する程度である（Fig. 2）。一方内側の波状累帯領域（例えばu-o-p-oにおけるuとpに含まれたoを指す）の縁は平滑〜波打っているが，融食面は認められなかった。

3.2 安山岩

安山岩は試料毎に斜長石サイズ，累帯構造パターン，不規則累帯領域の特徴が異なる。

試料326の斜長石（長径0.2〜2mm）は，しばしば不規則累帯領域を含み，その形態は汚濁帯のように，メルトが密に分布する場合（Fig. 2f）と，蜂の巣構造のよう，円形〜不規則形のメルト包有物が散在する場合とがある，不規則累帯領域は結晶の中心部（p-o）や周縁部（u-o-p-oなど）に存在し，1つの斜長石結晶において最大3つ存在していた。また結晶最外部には10〜200μmの波状累帯領域が共通してみられ，領域内には10〜60個程度の縁（1〜5μmの幅）がある。しかし汚濁帯を有する場合には，その領域幅は10〜20μmであった。この場合，結晶最外部の波状累帯領域中の縁の幅はその領域内の外側と内側で異なっており，10〜20μmの凹凸側では1〜2μm，それより内側では2〜5μmであった。最外部の波状累帯領域中の縁は平滑あるいは波打っている，融食面は全く認められないか，あるいは1から3つ認められた。

試料305Aの斜長石結晶（長径0.4〜1mm）はしばしば不規則累帯領域を含み（Table 3），その形態は主に蜂の

Fig. 3. Histograms of An content (mol.%) of plagioclase phenocryst cores in the samples.
斜長石累帯構造が示すマグマ溜まりの分化過程

果構造に類似するが、衝突帯に類似する場合もある。不規則累帯領域は1つの斜長石斑晶において最大2つ存在していた。斑晶最外部には、共通して30～60個程度の繊（1～3μmの幅）からなる波状帯構造（100～150μmの領域幅）がある。その波状帯構造の幅の特徴は、領域内の外側と内側で大きく異なっている。外側10～30μmの繊は2μm以下の幅をもち、平滑もしくは波打った形状を呈し、最大で5つの融結繊をもつ。内側80～100μmの繊は2～3μmの幅をもち、一般に平滑で融結繊を含まないが、まれに最大2つの融結繊をもつ。1つの斑晶に含まれる融結繊の数は最大5つであった。

試料305Bの斜長石には、柱状を呈する比較的大きな（長径0.5～0.8mm）斜長石と比較的小さな（長径0.3～0.5mm）短冊状の斜長石がある。大きな斜長石は一般に清澄（主にα）であり、波状帯構造の中の絞り発振幅の大きることが、偏光顕微鏡によってしばしば確認される。波

Table 1. Whole-rock major element analyses and modal composition.

<table>
<thead>
<tr>
<th>sample name</th>
<th>basalt</th>
<th>andesite</th>
<th>dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>major elements (wt.%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>50.26</td>
<td>57.06</td>
<td>60.31</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.05</td>
<td>1.16</td>
<td>0.80</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.88</td>
<td>18.38</td>
<td>17.30</td>
</tr>
<tr>
<td>FeO*</td>
<td>9.45</td>
<td>8.17</td>
<td>7.14</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>MgO</td>
<td>3.34</td>
<td>2.61</td>
<td>2.14</td>
</tr>
<tr>
<td>CaO</td>
<td>11.82</td>
<td>8.03</td>
<td>6.77</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.56</td>
<td>3.48</td>
<td>3.99</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.32</td>
<td>0.82</td>
<td>0.96</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.14</td>
<td>0.17</td>
<td>0.31</td>
</tr>
</tbody>
</table>

modal composition (vol.%) Phenocrysts

<table>
<thead>
<tr>
<th>basalt</th>
<th>andesite</th>
<th>dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>plagioclase</td>
<td>33.1</td>
<td>11.2</td>
</tr>
<tr>
<td>clinoxyroxene</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>orthopyroxene</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Fe-Ti Oxide</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>apatite</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>groundmass</td>
<td>66.3</td>
<td>88.0</td>
</tr>
</tbody>
</table>

Major elements are normalized to 100% anhydrous. FeO* is total Fe as Fe₂O₃. Modal composition is based on 2000 to 4000 points per slide. Crystals larger than 0.01 mm² in area are regarded as phenocrysts. All rocks are free from hornblende and quartz.

Table 2. Modal composition and area of plagioclase phenocrysts of the samples obtained by image processing.

<table>
<thead>
<tr>
<th>sample name</th>
<th>basalt</th>
<th>andesite</th>
<th>dacite</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole-rock SiO₂ (wt.%)</td>
<td>50.26</td>
<td>57.06</td>
<td>60.31</td>
</tr>
</tbody>
</table>

Textural characteristics of plagioclase phenocrysts

mode (vol. %)	29.6	11.5	13.5	8.4	16.6	9.0	5.0	5.4	4.1
no. of phenocrysts analyzed	298	272	443	899	109	210	385	256	308
mean area (mm²)	0.38	0.16	0.12	0.04	0.59	0.17	0.06	0.08	0.05
min area (mm²)	<0.01	0.01	0.01	<0.01	0.02	0.01	0.01	0.01	<0.01
max area (mm²)	9.28	3.07	1.66	0.49	9.56	10.80	1.62	1.44	0.88
median area (mm²)	0.13	0.04	0.08	0.03	0.18	0.04	0.03	0.06	0.03
表3. 基性斑晶（314）、安息香（305A）およびダリクト（301）の結晶化形態パターンの多様性

<table>
<thead>
<tr>
<th>zoning pattern* (core** → rim)</th>
<th>basalt (314)</th>
<th>andesite (305A)</th>
<th>dacite (301)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>85</td>
<td>193</td>
<td>227</td>
</tr>
<tr>
<td>u-o</td>
<td>52</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>p-o</td>
<td>71</td>
<td>154</td>
<td>23</td>
</tr>
<tr>
<td>u-p-o</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>o-p-o</td>
<td>7</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>u-o-p-o</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p-o-p-o</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>u-p-o-p-o</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>o-p-o-p-o</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u-o-p-o-p-o</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>unknown</td>
<td>42</td>
<td>47</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>298</td>
<td>443</td>
<td>308</td>
</tr>
</tbody>
</table>

* o = oscillatory zoned region. p = patchy zoned region. u = unzoned region.

** Core is apparently central part of each phenocryst on thin sections.
5. 考察
5-1 累帯構造の解釈とその前提
本研究で明らかになった全岩 SiO₂ wt.% と斜長石累帯構造との関係（Fig. 5）は、マグマ滴まりの過程を理解する上で重要な情報を与える。以下では次の 2 つの前提に基づいて、マグマ滴まりの分化過程を考察し、全岩 SiO₂ wt.% と斜長石累帯構造との関係を説明することを試みる。

前提 (1) マグマ滴まり中のマグマが地殻物質の同化・混成を伴わず、冷却に伴う結晶分化のみで玄武岩からデイサイトへ至り、また、玄武岩、安山岩、デイサイトのそれぞれのマグマは、分化に要した時間が異なるだけで同じ過程を経ていると考える。玄武岩からデイサイトに至る一連の過程は次の 2 つに大別して考える。1 つは、マグマ滴まりが冷却に伴う結晶化、結晶分別によって分化する過程で、もう 1 つは分化したマグマが相対的に未分化なメルトと内部混合（self-mixing）する過程である。これらの過程は別の言葉で言えば、マグマ滴まり内部の温度・組成が、冷却に伴い時間的に不均質になる過程（以下、“不均質構造の発達過程”と呼ぶ）、そして、内部混合によって空間的に不均質が（部分的に）解消する過程（以下、“不均質構造の緩和過程”と呼ぶ）を示す。実際マグマ滴まり内部で生じる現象は、例えば boundary layer の形成（Tait, 1988; Kuritani, 1998）、マグマの混合（小屋口, 1986; 1987）、対流 (Jaupart and Tait, 1995)。

Fig. 4. (a) Relation between the whole-rock SiO₂ contents (wt.%) and the number of resorption zones in oscillatory zoned regions of plagioclase phenocrysts. Representative number means the maximum number for phenocrysts. (b) Frequency of zoning pattern of o (open square) and those with p (solid square) in each sample plotted against the SiO₂ contents. (c) Frequency of zoning pattern with u for plagioclase phenocrysts in each sample plotted against the whole-rock SiO₂ contents.

Fig. 5. Schematic illustration showing the characteristics of plagioclase zoning in basalt, andesite and dacite.
などのメカニズムが指摘されているように、著者らの想定するマグマの不均質構造の発達・緩和過程と深く関係している。緩和過程は、マグマの内部混合や対流の他に、マグマ溜まり下部の高温未分化マグマがブリームとして上部マグマへ混入する過程も考えられる（Couch et al., 2001）。あるマグマ溜まり内のマグマが地殻の融解を伴わず玄武岩からダイサイトまで分化する、ということが現在のところ明らかに自明ではないが、1つの極端な場合として考察することは意味がある（McBirney et al., 1985）。本研究で用いた白浜層群のソラサイト系列火山岩類は、地殻の同化・混成を伴わない結晶分化作用のみで化学組成のトレンドが説明可能である（Tamura, 1994; 1995）ことから、著者らの想定するマグマ溜まりと矛盾しない。また、分化の程度が増すと斜長石のAn値が減少（Fig. 3）、斜長石斑晶サイズが小さくなっている（Table 2）も結晶分化作用が働いたことを示唆する。なお、この前提（1）は、マグマ溜まり内部の温度・組成構造が空間的に不均質であり、結晶分化作用がマグマ溜まり内部の全空間に渡って同様に起こらないという前提に基づいている。

前提（2）累帯領域の種類。特にo, pの違いは結晶・メルトのそれぞれの累帯構造形成の駆動力の種類（成長駆動力、融解駆動力）によるのではなく、駆動力の大きさによる、と考える。一般に、結晶成長の駆動力が大きくなると成長面が不安定化すると考えられている（Mullins and Sekerk, 1964）。Lofgrenは、実験条件として高い成長駆動力（過飽和度）をもつ環境下において、メルト包物を結晶内部に含有する酸化状の結晶成長を再現している（Lofgren, 1974; 1980）。またTsuchiyama（1985）は、融解駆動力の大きな条件下での包物を含む累帯構造（汚濁帯）の形成を再現している。これらのことは、融解駆動力や成長駆動力の大きな環境下でpが形成することを裏付ける。pの欠側の欠点は、波打った形状を呈していること（Anderson, 1984）も、結晶成長学的にこれらの考察を裏付ける。このような考えることが累帯構造の形成の特徴、化学組成に関する特徴のすべてを説明出来るとは思えないが、メルト包物の有無と駆動力の大きさに関係があると考えることにする。以上をまとめると、メルト包物を取り込んだ累帯領域の形成の種類は、複数あるがどれも、それらすべての累帯領域は成長を通じて融解駆動力の大きさを環境下で生じ、と言える。一方oがフセリッチな面をもち、包物を伴わない形態の特徴であることを考えると、pに比べ、oは融解駆動力や成長駆動力の比較的小さな環境で形成されたと予想される。oを構成する平滑な結晶、結晶成長の駆動力が小さいときに生じると考えられる。またoを構成する融解鍋は、結晶の融解する駆動力が小さいときに生じると考えられ、Tsuchiyama（1985）のsimple dissolutionに対応する。以上のことから、oは成長もしくは融解駆動力が小さい環境で形成されると言える。以上の前提（2）の内容をTable 4にまとめた。

以上の2つの前提に基づき、全岩SiO₂ wt.％と斜長石累帯構造の特徴との関係を不均質構造の緩和過程の変化として説明する。なお、結晶中心部にみられる累帯領域uは、比較的温度・組成が均質なマグマ溜まりの（部分系）で、非常に成長駆動力で形成されたと考えられ、またuは累帯領域o内の幅の広い結晶と同じ成因であると予想されるが、以下の考察では抜粋しない。

5-2 不均質構造の緩和に伴う結晶成長・融解の駆動力の定量的表現

はじめに、結晶（α）/メルト間で局所平衡が成り立っている系A（温度Tₐ, 結晶の組成Cₐ, 結晶と平衡にあるメルトの組成Cₐ）を想定する。Aが相対的に未分化な系B（温度Tₐ（T＞Tₐ）, メルトの組成Cₐ（T＜Cₐ））と混合し、系M（温度Tₐ, メルトの組成Cₐ）となった状況での、結晶αと周りのメルトの結晶成長・融解の駆動力を斜長石2成分系で考察する（Fig. 6a）。この場合、結晶やメルトの組成をすべてCa濃度で置き換えて考えてよい。系Bは結晶と共存している場合を扱うと議論が複雑になるため、系Bはリキダス上の組成、温度をもち、結晶核が形成されていない場合を考える。つまり、以下では、(1) 分化マグマA（結晶αとメルト）＋未分化マグマB（メルトのみ）の場合（"case1"と呼ぶ）について考察を行い、(2) 分化マグマA（メルト）＋未分化マグマB（結晶βとメルト）の場合（"case2"と呼ぶ）について、後に及ぼす、なお、以下の考察では、水の効果（相図のループ自体が変化すること）を考えない。

<table>
<thead>
<tr>
<th>type of driving force</th>
<th>growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>dissolution</td>
<td>p</td>
</tr>
<tr>
<td>dusty zoning</td>
<td></td>
</tr>
<tr>
<td>honeycomb str</td>
<td></td>
</tr>
<tr>
<td>patchy zoning</td>
<td></td>
</tr>
<tr>
<td>skeletal texture</td>
<td></td>
</tr>
<tr>
<td>degree of driving force</td>
<td></td>
</tr>
<tr>
<td>high</td>
<td></td>
</tr>
<tr>
<td>low</td>
<td></td>
</tr>
<tr>
<td>resorption zone</td>
<td>o</td>
</tr>
<tr>
<td>flat zone</td>
<td>o</td>
</tr>
</tbody>
</table>
流体の乱流混合による物質移流の影響を考えない限り、熱拡散速度は必ず物質拡散速度よりも大きいとみなしてよい。この場合、熱拡散係数で系の温度が変化すると考えられ、結晶αの周りのメルト組成がC_Mとなること（組成の均質化；Fig. 6a の C_i→C_j の変化を指す）よりも先に結晶α、メルトの温度がT_Mになる（熱的均質化）。

Fig. 6a で C_i→C_j、C_j→C_k の変化を指す。また、温度T_Mでの系Aにおける平衡であるべきメルト組成はC_L ではなくC_L*a になる。このとき、結晶は過熱した状態にあるので、メルト組成の均質化に先行して、融解が起こる。しかし、結晶の融解は熱の吸収（系の温度の低下）とメルト組成の変化を伴うため、問題を複雑にする。そこで、以下では、融解（満熱）の影響を考慮せず、系が平衡に至る前にメルト組成が均質化した場合を仮定し、考察を進める。この仮定のもとでは、結晶αの周りのメルト組成はC_L とC_L との中間の値C_Mになる（Fig. 6a の C_i-C_i線上の点C となる）。結果として、系Mにおける結晶C_3+メルトC_0 は、それぞれの個別系としては両方とも液相線と固相線で囲まれたループの中に入り、このことは、結晶αだけの系を考えると、結晶は融解し、同様に、メルトだけの系を考えるとメルトは過冷却状態にあり、結晶化することを意味している。そして系Mにおいて、結晶αが過熱による融解と組成均質化による結晶成長の駆動力を両方ともすることを意味する。しかし、結晶αの周りのメルトは一旦過熱され、未飽和状態C_s を経るため、実際には、結晶αが融解駆動力を得る時間と結晶αの周りのメルトが結晶成長の駆動力を得る時間にずれがある。

ここで、系Mにおける結晶・メルトそれぞれの結晶成長・融解駆動力を以下のように定義する（Fig. 6a）。

結晶の融解駆動力（未飽和度に対応）；温度T_Mで平衡であるべき結晶組成C_s*と、結晶組成C_sとの差

\[\Delta C_s = C_s* - C_s \]

（1）

メルトの成長駆動力（過飽和度に対応）；組成の均質化後のメルト組成C_Mと、温度T_Mで平衡であるべきメルト組成C_L*との差

\[\Delta C_L = C_L* - C_L \]

（2）

相図の幾何学的形状から考察すると、\[\Delta C_L \] はC_L とC_L との中間的な値でC_L と最大になるが、\[\Delta C_s \] はC_L とC_L と近いほど大きくなる。

5-2 成長・融解の駆動力とマグマ溜まりの緩和過程

すでに述べたように、斜長石の累労帯領域はマグマ溜まり内の局所的な非平衡状態に関する情報ももち、そして累労帯領域の中間は駆動力\[\Delta C_s \] や\[\Delta C_L \] の大きさに関係する。次に、\[\Delta C_s \] や\[\Delta C_L \] の大きさと緩和過程の関係について考察する。

不均質構造の緩和過程を特徴づけるパラメータ（以下 "緩和過程のパラメータ" と呼ぶ）として、分化マグマA の体積比ϕ と組成コントラストの強度γ を前の議論に基づいて定義する。先に定義した系A と系B の体積を
それぞれ \(V_a, V_b \) とし、体積比 \(\phi \) を、注目する系全体の体積 \((V_a + V_b)\) と分化マグマ \(A \) の体積 \(V_a \) との比で定義する。また \(\gamma \) を、分化マグマ \(A \) と未分化マグマ \(B \) のモデルの組成比として定義する。式で表すと体積比 \(\phi \)、組成コントラストの強度 \(\gamma \) はそれぞれ

\[
\phi = \frac{V_a}{V_a + V_b}
\]

\[
\gamma = \frac{C_{LB}}{C_{LA}}
\]

となる。前節の議論に基づくと、\(\Delta C_L \) は体積比 \(\phi \) が 0.5付近、則 \(V_a \approx V_b \) のときに最大値をとると考えられる。また、\(\Delta C_S \) は、体積比 \(\phi \) が小さいとき、則分化マグマの体積 \(V_a \) が小さいときに大となりと考えられる。

駆動力 \(\Delta C_S, \Delta C_L \) を求めるためには、温度 \(T_M \) とメルト組成 \(C_{LM} \) を既の変数 \(C_{LA}, T_a, C_{LB}, T_b \) によって表す必要がある。そしてさらに、温度 \(T_M \) で平衡な結晶組成 \(C_{SA}* \) とメルト組成 \(C_{LA}* \) の値もまた既の変数によって表す必要がある。

メルトのモル体積の組成依存性や比熱の組成依存性を無視すると、マスバランスによりメルト組成 \(C_{LM} \) と温度 \(T_M \) はそれぞれ

\[
T_M = \phi T_a + (1 + \phi) T_b
\]

(5)

\[
C_{LM} = \phi C_{LA} + (1 + \phi) C_{LB}
\]

(6)

と書ける。

熱力学的に平衡にある系では、温度 \(T_M \) において平衡である結晶、メルトの組成 \(C_{SA}* \)、\(C_{LA}* \) は一旦に決まるので、ここで \(T_M \) と \(C_{SA}* \)、\(C_{LA}* \) の関係を

\[
C_{SA}* = f(T_M)
\]

(7)

\[
C_{LA}* = g(T_M)
\]

(8)

と表すことになる。これらの式は温度 \(T_M \) と、温度 \(T_W \) でのソリダスの組成、リキダスの組成との関係を示す。これらの式において、温度と組成とは対応するので、逆関数 \(f^{-1}, g^{-1} \) も定義でき、

\[
T_M = f^{-1}(C_{SA}*)
\]

(9)

\[
T_M = g^{-1}(C_{LA}*)
\]

(10)

と書ける。これらの式を用いると、\(\Delta C_S, \Delta C_L \) はそれぞれ変数 \(\phi \)、\(C_{LA}, C_{LB} \) で書き表せる。

\[
\Delta C_S = C_{SA}* - C_{SA}
\]

\[
\Delta C_L = f' \phi T_a + (1 - \phi) T_b - f(T_a)
\]

\[
\Delta C_L = C_{LM} = C_{LA}*
\]

\[
= f(\phi g^{-1}(C_{LA}) + (1 - \phi) g^{-1}(C_{LB})) - f(g^{-1}(C_{LA}))
\]

(11)

と書ける。

次に関数 \(f, g \) を求めると、山崎・坂野 (1972) に従って導出すると、代数計算により

\[
C_{SA}* = f(T_M) = \frac{1 - e^m}{e^n - e^m}
\]

(13)

\[
C_{LA}* = g(T_M) = e^n \frac{1 - e^m}{e^n - e^m}
\]

(14)

と/orされる。但し

\[
m = m(T) = \frac{\Delta S_{SA}(T - T_{\text{melting}})}{RT}
\]

(15)

\[
n = n(T) = \frac{\Delta S_{SA}(T - T_{\text{melting}})}{RT}
\]

(16)

である。\(R \) は気体定数、\(\Delta S_{SA}, \Delta S_{LA} \) は融解エントロピー変化、\(T_{\text{melting}} \) は変態温度である。これらの値は山崎・坂野 (1972) に従い、

\[
\Delta S_{SA} = 10.10 \quad (\text{cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}), \quad \Delta S_{LA} = 15.10 \quad (\text{cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}), \quad T_{\text{melting}} = 1391 \quad (\text{K}), \quad T_{\text{melting}} = 1823 \quad (\text{K})
\]

とした。関数 \(f, g \) の導出には、理想溶液と仮定したことや、融解エントロピー変化の組成依存性を無視し一定値を与えたことなど多くの仮定に基づいているが、議論を進めることは問題ない (山崎・坂野, 1972)。以上より、\(\Delta C_S, \Delta C_L \) と \(\phi \) との関係を式 (11), (12) によって表することが出来た。

Fig. 7 a に式 (11), (12) で求めた \(\phi \) と \(\Delta C_S, \Delta C_L \) との関係を示している。\(C_{LA} = 0.2, C_{SA} = 0.8 \) の場合を示しており、このとき強度 \(\gamma = 4 \) である。\(\Delta C_L \) が \(\phi \) が中では最大値をとり、\(\Delta C_S \) は \(\phi \) が大きくなると減少する、これらの関係は前の議論と同様である。

次に導出した式を用いて累帯領域 \(p, o \) の成因と\(\phi, \gamma \) との関係を考察する。Fig. 7 a より \(\Delta C_L > \Delta C_S \) であることや、メルトが成長駆動力 \(\Delta C_L \) を得ることが先に結晶融解駆動力 \(\Delta C_S \) を得ることから、累帯領域 \(p \) の形成には、\(\Delta C_L \) より \(\Delta C_S \) が重要な役割をもつと考えられる。

以下では \(\Delta C_S, \Delta C_L \) のうち \(\Delta C_S \) が累帯領域の種類を決める基本的な要素として議論を進める。

\(p \) が形成するために必要な融解駆動力 \(\Delta C_S \) を検討する
斜長石累帯構造が示すマグマ溜まりの分化過程

ために、ΔCₕある大きさΔCₗよりも大きいときに累帯領域pが形成すると考える。ΔCₗは、通過によって結晶の融解モードがsimple dissolutionからpartial dissolution（Tsuchiyama, 1985）へ変化するときの臨界のΔCを意味するが、本稿ではΔCₗの具体的な数値を求めないことにする。このとき、pが形成される条件はΔCₗ>ΔCₕであり、一方で累帯領域oが形成される条件はΔCₕ<ΔCₗと書ける。またこのとき、ΔCₗの値に対応して臨界体積比φₗ=φₘが決まり（Fig. 7a）、φ<φₗでpが、φ>φₘでoが形成する。

φあるいはpの累帯領域の形成条件は、強度γの値によって異なる。例としてClₐ=0.5、Cₐ=0.7の場合をFig. 7bに示す。このときγ=1.4で先程のγ=4の場合に比べてその値が随分小さい。Fig.7bに示すように、γが小さいときには、あらゆるφでΔCₗ<ΔCₘとなり、pが形成されない場合がある。これより，γの値がある程度大きいことが，pが形成するための条件であることがわかる。以上より，融解駆動力ΔCₗを，緩和過程のパラメータφ,γに関連づけることが出来る。

![Fig. 7. ΔC as a function of φ. (a) Clₐ=0.2, Clₐ=0.8. (b) Clₐ=0.5, Clₐ=0.7.](image)

累帯領域の種類の違いと，累帯構造形成の駆動力，さらに緩和過程のパラメータとの関係をまとめると次のようになる。累帯領域pはΔCₗの大きな環境下で形成され，そして，そのような環境は，緩和過程のパラメータである体積比φが小さく（分化マグマAの体積が相対的に小さく），かつ強度γが大きい（分化マグマAと未分化マグマBの組成比が大きい）場合にもたらされる。一方，累帯領域oはΔCₗの小さな環境下で形成され，そしてそのような環境は，体積比φが大きい（分化マグマの体積が相対的に大きい）あるいは強度γが小さい（組成比が小さい）場合にもたらされる。

5-4 分化マグマA（メルト＋未分化マグマB（結晶βとメルト））の混合過程

分化マグマA（メルト＋未分化マグマB（結晶βとメルト））の場合（case2）について考察する。case1と同様，系Aが未分化系Bと混合し，系Mとなった状況での結晶βと結晶βの周りのメルトのそれぞれの駆動力を考察する（Fig. 6b）。

case1と同様に熱拡散係数で系の温度が変化すると考えると，結晶βの周りのメルト組成がClₐになること（組成的均質化；Fig. 6bのCₐ→Cₐに変化を指す）よりも先に結晶βメルトの温度がTₐになる（熱的均質化；Fig. 6bのCₐ→Cₐに変化を指す）。また，温度Tₐでの系Bにおける平衡であるべきメルト組成はClₐでではなくClₐ*（case1のClₐ*と同じである）になる。このとき，結晶βの周りのメルトは過冷された状態にあるので，case1とは異なり，核形成・結晶成長が熱的均質化直後に（メルト組成の均質化に先行して）起こる，熱的均質化直後の成長（核形成）の駆動力ΔCₗは，メルト組成Clₐと温度Tₐで平衡であるべきメルト組成Clₐ*との差

\[
\Delta Cₗ = Clₐ - Clₐ^*
\]

である。なお，結晶β自体は過冷されても変化しないが，結晶の界面では成長が始まる。

熱的均質化直後に結晶核の形成や成長が起こると，発熱（系の温度の上昇）とメルト組成の変化を伴うため，問題が複雑になる。そこで，case1の場合と同様，系の平衡に至る前にメルト組成が均質化したと仮定し，潜熱の影響を考慮せずに，つまりメルト組成の均質化が終わるまで核形成・結晶成長が全く起こらない場合を想定して考察を進めてみよう。この仮定のもとは，結晶βの周りのメルト組成はClₐからClₐとClₐの間の値Clₐ（Fig. 6bのCₐ-Cₐ線上の点Cₐ）となり，メルトのCa濃度は小さくなる。その結果，成長の駆動力ΔCₗは小さくなり，ΔCₗ（case1のΔCₗと同じ；Fig. 6b）になる。相図の幾何学的形状から考察すると，ΔCₗは，Clₐ*がClₐに
近いほど大きく、また、明らかに \(\Delta C_L < \Delta C_L' \) である（Fig. 6b）。さらに、結晶 \(\beta \) は、実際にはメルト組成の均質化よりも先に駆動力 \(\Delta C_L \) で成長する。従って、case2 における累帯領域 \(p \) の形成条件に対しては、\(\Delta C_L \) はないと \(\Delta C_L' \) が重要であると考えられる。

\[
\Delta C_L = \Delta C_{L1} - \Delta C_{L2} = C_{L1} - g (\phi T_1 + (1 - \phi) T_2) = C_{L1} - g (\phi^{-1}(C_{L1}) + (1 - \phi) g^{-1}(C_{L2})) \quad (18)
\]

\(\Delta C_L \) と、case 1 で定義した緩和過程のパラメータ \(\phi, \gamma \) との関係を Fig. 8a に示す。Fig. 8a には \(C_{L1} = 0.5, C_{L2} = 0.7 \) の \(\gamma \) が小さい場合と \(C_{L1} = 0.2, C_{L2} = 0.8 \) の \(\gamma \) が大きい場合を示している。\(\phi \) が大きくなると \(\Delta C_L \) は増加するという関係は、先の定性的な議論と調和的である。

case 1 と同様に、\(\Delta C_L \) がある値 \(\Delta C_L' \); このときの体積比 \(\phi = \phi_c \) もより大きい場合に \(p \) が出来ると考えると、\(p \) が形成するための条件は以下のようになる。累帯領域 \(p \) は \(\Delta C_L' \) の大きな環境下で形成され、そのような環境は緩和過程のパラメータである体積比 \(\phi \) が大きくなる（分化マグマ A の体積が相対的に大きく）、かつ強度 \(\gamma \) が大きい（分化マグマ A と未分化マグマ B の組成比が大きい）場合に形成される。この結果は、case 1 と一部異なる。しかし、結晶が残存していた方のメルトの体積が大きい場合に \(p \) が形成される、という意味では case 1 と case 2 は同じである。

case 1 と case 2 はどのようにまとめることが出来るか。

緩和過程のパラメータ、体積比 \(\phi \) が小さい（分化マグマ A の体積が相対的に小さい）場合、緩和に伴い分化マグマ A 中の結晶 \(\alpha \) が著しく過冷されるため、不規則累帯領域 \(p \) 例えば汚濁帯や巣の巣構造; Tsuchiyama, 1985）が形成されるが、未分化マグマ B のメルトはあまり過冷されず、結晶 \(\beta \) の外側に平滑な形状を呈した籍 \(\alpha \) が形成される。また体積比 \(\phi \) が大きい（分化マグマ A の体積が相対的に大きい）場合、未分化マグマ B のメルトが著しく過冷されるため、結晶核の形成や、結晶 \(\beta \) の外側に不規則累帯領域 \(p \) 例えばバチ状帯累帯構造や磷状状構造; Lofgren, 1980; Anderson, 1984）の形成が起こるが、分化マグマ A 中の結晶 \(\alpha \) はあまり過熱されないため、融解籍 \(\alpha \) が形成される。

また、緩和過程のパラメータ、強度 \(\gamma \) が大きい（分化マグマと未分化マグマの組成比が大きい）場合に不規則累帯領域 \(p \) が形成されるが、一方、\(\gamma \) が十分小さい（分化マグマと未分化マグマの組成がほぼ同じである）場合には不規則累帯領域 \(p \) は形成されず、波状累帯領域 \(\alpha \) が形成される。このことは言い換えると、\(\gamma \)が大きい場合には分化マグマ A の結晶 \(\alpha \) は部分融解により汚濁帯を形成し、未分化マグマ A の結晶 \(\beta \) は著しく過冷され粒状状態を形成するが、強度 \(\gamma \) が小さい場合には分化マグマ A の結晶 \(\alpha \) は融解籍を形成し、未分化マグマ A の結晶 \(\beta \) は平滑な形状の籍を形成する。と言える。Fig. 8b には \(\gamma \) と \(\Delta C \) の関係を示しているが、この図から、\(p \) を形成するために必要な \(\gamma \) が形成される。これより、case 1, case 2 に関わらず、また体積比 \(\phi \) の大きさに関わらず、\(\gamma \) の値が大きいことが必要であることがわかる。

以上のことを総合的に考えると、不規則累帯領域 \(p \) の形成には強度 \(\gamma \) の大きさが重要であると言える。また、体積比 \(\phi \) と \(p \) の関係を議論するのは \(\gamma \) の場合に比べて難しいが、成長と融解、どちらの駆動力によって \(p \) が形成されたのかということが結晶組織から分かり、case 1, case 2 のいずれであるかが特定でき、それによって体積比 \(\phi \) についての制約を与えることも可能である。

天然でみられる累帯領域とは以上の考察と同の関係について考える。一般に、天然では斜長石結晶の \(p \) は \(p-o \) として存在し、結晶最外辺に \(o \) がある。このことは、緩和過程に伴う結晶の駆動力が「大一小」と推移したことを見唆す。また、全岩 SiO₂ wt.% の増加に伴い斜長
本研究で示した全岩SiO₂ wt.%と斜長石累帯構造の特徴の関係は、以下のようにマグマ溜まりの分化の進行に伴う緩和過程の変化として解釈出来る（Fig. 9）。

低SiO₂ wt.%の岩石試料ほど不規則累帯領域をもつ斜長石が多いことは、分化初期（玄武岩）のマグマ溜まりにおいて、強度γの大きい緩和過程が起こりうることを示唆する。また、玄武岩でみられる不規則累帯領域はバッチ状累帯構造の特徴を有することから、case 2の緩和過程が卓越していると考えられる（Fig. 9上）。

case 2では、体積比ϕが大きいこともpが形成される為の条件
である。
一方、分化後期（デイサイト）のマグマ溜まりにおいて、強度γの小さい緩和過程が卓越していると考えられる。また、デイサイトでみられる不規則累積帯は連続の果樹が特徴を有することから、case1の緩和過程が卓越していると考えられる（Fig.9下）。case1で体積比φが大きい場合にはpは形成されない。以上のことから、少なくとも玄武岩から分化してデイサイトまで至る大局的な時間スケールでは、分化の進行に伴いマグマ溜まり内での緩和過程が変化した（緩和過程のパラメータγが小さくなったこと、卓越するcaseが異なる）可能性が考えられる。安山岩の斜長石には多様形態のpが含まれることから（Fig.5）、case1とcase2のどちらの状況もよく起こっていたと推定される（Fig.9中）。従って、安山岩でみられる斜長石累積構造は分化初期緩和過程から後期緩和過程への移り変わりを表しているのかもしれない。

結晶空間内にみられる累積領域の種類の変化は、緩和過程（と累積領域の形成）に伴い、結晶が新たな物理的な化学的条件下にかかることを示す。従って累積構造パターンの多様性は、緩和過程の多様性があることに対応する。従って、観察結果から、高SiO₂wt.%に比べ、低SiO₂wt.%の緩和過程のパラメータの取る値の範囲は広い、と説明出来る。

マグマの注入に対しても、上記のモデルは適用出来る。マグマ溜まり内のマグマと注入されたマグマの混合過程を上記の考察の不均質構造の緩和過程に適用すればよい。デイサイト質マグマの下部に未分化的マグマが注入した場合には、強度γの大きい緩和過程が起こることが予想されるが、実際にはデイサイト質マグマにはpが少なく、このことは両者は緩和しにくいと考えることは完全である。実際、玄武岩質マグマとデイサイト質マグマの混合は容易に起こらず（小屋口, 1986）、成層構造を保つと考えられる（Singer et al., 1995）。つまり、デイサイト質で分化的進んだマグマは、マグマの注入に対して閉じた系である。と推定してよい、このようなマグマ溜まりの具体的なイメージを求める事は本文の主旨ではないのでこれ以上の議論しない。また本稿では、地殻の融解、即ちメルトと固体の反応については考えていないが、本稿で行ったマグマ同士の混合過程をこのような事に拡張して考察することは可能だろう。さらにAnderson (1984) は玄武岩の斜長石累積構造の成因。特に中心部の非累積領域を除いた周縁部の斜長石累積領域oとpの形成の場を、マグマ溜まり内ではなく火成上昇中のマグマとしている点で著者らと異なるが、このような違いは本文では議論しない。

5-6 今後の課題
斜長石累積帯の形成の駆動力の定量的考察は、今後より現実的な方向へ発展させる必要がある。例えば、本稿では斜長石の成長や融解の駆動力をAn-Ana2成分系で考察したが、Diopsideや水を加えた場合を考えることによって、より現実的になる。また、結晶成長・融解の理論的考察のため、駆動力ΔCを無次元量（未飽和度、過飽和度）として扱うことも重要である。

本稿では以下の様々な結晶化学成分とpの形成条件との関係について詳しく検討しなかった。例えば、玄武岩質マグマの斜長石はAn イオンが少ないため、あらゆる成分のマグマとの混合を仮定しても、高An斜長石はpを形成するだけの融解駆動力ΔCを得ることができない可能性がある。また、An イオンによって斜長石の成長速度が異なることが（Kirkpatrick et al., 1979）がpの形成条件に関係することかもしれない。

本研究では、薄片上で任意に切られた斜長石結晶について調査した為、これらの結晶1つ1つを結晶学的形で通っておらず、真の累積構造パターンを反映していない可能性がある。しかし、ステレオロジカルな考察から、薄片上で任意に切られた結晶の多くは結晶中心部付近で切断されている可能性が高い（例えば Cashman and Marsh, 1988）といえるので、薄片上の結晶について調べた結晶サイズ分布もまた真の結晶サイズ分布の第一近似として利用できる。このことから、本研究のように、統計的に調査した累積構造パターンは、それぞれの岩石試料を代表するものであると考えて良い。今後、斜長石累積構造をより詳しく記載する為に、斜長石結晶中、それぞれの累積領域が占める面積や、薄片上で斜長石結晶が切られた方向などを考慮することが重要である（Anderson, 1984; 堂尾・海野, 1995; Umino and Horio, 1998）。

注目する累積領域の面積がどれくらいの体積に換算されるかを考慮することも重要である（例えば Pearce et al., 1987）。また、大きい結晶は累積している面積も大きいことから、結晶サイズの大小と累積構造パターンの関係を検討することも重要である。本稿では示していないが、著者らは累積構造パターンと結晶サイズの関係を調べたところ、予想されるように、大きい結晶ほど累積構造パターンに多様性があった。しかし、全岩SiO₂wt.%の値が大きくなると累積構造パターンが単調になるという関係は、結晶サイズの大小によるものではないことを著者らは確認している。

6. 結 論
（A）結晶分化作用のみで説明出来る分化トレンドをもつ伊豆半島白浜層群のソレサイト系列火山岩について
斜長石累帯構造が示すマグマ溜まりの分化過程

斜長石累帯構造の形態観察を行った。そして岩相学組成と累帯構造の特微との関係を調査した。著者らは形態累帯領域、不規則累帯領域、非累帯領域の3つを基準として、結晶分布にかかってみられる累帯領域の現れ方の変化（累帯構造パターン）や組の形態的特微を記載した。

（B） 斜長石累帯構造と全岩 SiO₂ wt.% の値の関係について、次のことが明らかになった：(1) 高 SiO₂ wt.% の岩石試料ほど1つかの結晶に含まれる鉱物を示すように見える跡（繊維飾）の数が増加している。この実験によると、不規則累帯領域 p をもつ割合が多い。この実験によると、不規則累帯領域 p をもつ割合が多い。この実験の結果、斜長石累帯構造の多様性に乏しくなる、玄武岩では多様なパターンが見られただけ、ダイサイトで見られたパターンはほとんどとおりであった。

（C） 以下の2つの前提に基づいて、全岩 SiO₂ wt.% と斜長石累帯構造の関係を説明するマグマ溜まりの分化過程モデルを提案した。不均質構造の発達や応力の繰り返しながら玄武岩マグマがダイサイトマグマまで結晶分離によって生じるというマグマ溜まりを想定する。不均質構造の種類（o, p）の違いは、結晶・周辺メルトの累帯領域形成の駆動力の由来、特に p は累帯領域形成的駆動力が大きい場合、o は累帯領域形成の駆動力が小さい場合に形成する。

（D） 全岩 SiO₂ wt.% と斜長石累帯構造の関係を、マグマ溜まりの分化の進行に伴う緩和過程の変化として、以下のよう説明した。マグマの不均質構造の緩和過程を、2段成分マグマ（相対的に分化したマグマと相対的に未分化なマグマ）の混合過程とみなし、そして、不均質構造の緩和過程を、分化したマグマを体積比 φ と2つのマグマの組成比γで特徴づける。分化初期では、体積比 φ、及び組成比 γ が大きい緩和過程が卓越する。分化後期には、体積比 φ が大きいか、または組成比 γ が小さい緩和過程が卓越する。

謝辞

JAMSTEC の田村芳彦博士には試料採取、議論、助言など、多くの点でお世話になった。EPMANN による結晶物質分析は金沢大学大学院自然科学研究科の森下知恵博士、清水洋平氏にお世話になった。また、金沢大学理学部地球科学及び自然科学研究科の方々には有益な議論をして頂いた。査読者である静岡大学の海野進博士には、斜長石累帯構造に関する助言を頂き、本論文が大きく改善された。匿名査読者の助言は、特に本稿の構成やモデルの改善に役立った。編集委員の東宮昭彦博士の助言によって本稿は大きく改善され、深く感謝します。

引用文献

Kuroki (1987) マグマの混合による不均質マグマの形成過程. 月刊地球, 9, 45-49.

山崎正男・坂野昇平 (1972) 単純な系において予想される斜長石の累帯構造, 火山, 17, 18–25.

(編集担当 東宮昭彦)